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The normal matrix in the least-squares re®nement of macromolecules is very

sparse when the resolution reaches atomic and subatomic levels. The elements

of the normal matrix, related to coordinates, thermal motion and charge-density

parameters, have a global tendency to decrease rapidly with the interatomic

distance between the atoms concerned. For instance, in the case of the protein

crambin at 0.54 AÊ resolution, the elements are reduced by two orders of

magnitude for distances above 1.5 AÊ . The neglect a priori of most of the normal-

matrix elements according to a distance criterion represents an approximation in

the re®nement of macromolecules, which is particularly valid at very high

resolution. The analytical expressions of the normal-matrix elements, which

have been derived for the coordinates and the thermal parameters, show that the

degree of matrix sparsity increases with the diffraction resolution and the size of

the asymmetric unit.

1. Introduction

The least-squares method is widely used for the re®nement of

crystal structures. The optimization procedure, which uses the

matrix of normal equations, has a great power of convergence.

In addition, the inversion of the complete normal matrix

provides the variance/covariance matrix of the re®ned par-

ameters and permits the determination of the precision of the

re®ned structure (Hamilton, 1964). The conventional least-

squares method using the full normal matrix has not, however,

been utilized to a great extent in macromolecular re®nement,

because the calculation and the inversion of the whole matrix

is a computationally expensive step, demanding signi®cant

time and memory for large systems. The full-matrix method, as

implemented in SHELXL (Sheldrick & Schneider, 1997), has

been applied to a limited number of small to medium-size

protein structures at atomic resolution in order to determine

the accuracy of the ®nal re®ned structure. However, because

of the aforementioned prohibitive computation times, the

re®nement packages commonly used for macromolecules

apply minimization methods that do not require the complete

exact normal matrix (Tronrud, 1999).

For the rapid computation of the full normal matrix, several

algorithms have been proposed. In the procedure described by

Agarwal (1978), approximate values of the normal-matrix

elements are computed by fast Fourier transform (FFT). A

fast approximate method for the evaluation of the matrix

elements for large structures with many diffraction data has

been proposed by Templeton (1999). This ef®cient calculation

uses precalculated tables and is valid for atoms with isotropic

thermal displacement factors. For structures with anisotropic

thermal displacement parameters, more complicated tables

would be required. For the fast computation of the exact

normal matrix, Tronrud (1999) proposed an ef®cient algorithm

based on FFT methods.

Dodson (1981) and Templeton (1999) have observed that

the normal-matrix elements, related to parameter pairs, have a

global tendency to decrease with the distance between the two

atoms. Recently, several protein structures have been re®ned

at atomic and subatomic resolution in our laboratory (Housset

et al., 2000; Jelsch et al., 2000). The magnitudes of the normal-

matrix elements were extensively analysed in the case of

crambin at 0.54 AÊ resolution; the matrix was found to be

extremely sparse. To understand which factors contribute to

the sparsity of the matrix, the analytical expression of the

normal-matrix elements has been derived for several param-

eters, as described in this paper.

2. The matrix of normal equations

2.1. Least-squares minimization

In a least-squares re®nement performed against the

re¯ection intensities, the quantity to minimize is of the formP
H

WH �IH ÿ I obs
H �2; �1�

where IH and I obs
H are the calculated and observed diffraction

intensities, respectively. The quantity to be minimized can also



be expressed similarly as a function of the structure-factor

moduli |FH| instead of the intensities IH. The factor WH

represents a weight for each re¯ection H, which can be taken

as the squared inverse estimated uncertainty of the measured

intensity. If the intensities are assumed to be a linear function

of each parameter for small changes, the system of normal

equations to be solved during one re®nement cycle is then of

the form

A dX � b; �2�
where A is the n2 symmetric normal matrix and dX is the

unknown shift vector to be applied to the n re®ned param-

eters. b is a vector of dimension n with elements like

bi �
P
H

WH �@IH=@pi� �I obs
H ÿ IH�: �3�

The normal-matrix elements concerning the re®ned param-

eters pi and pj are obtained from the summation of the

products of the derivatives over the re¯ections H:

Aii �
P
H

WH �@IH=@pi� �@IH=@pj�: �4�

The solution of equation (2) can be obtained by inverting the

normal matrix. Alternatively, the conjugate-gradient method

(Hestenes & Stiefel, 1952; Konnert, 1976) solves the equation

by an iterative algorithm which does not require the matrix

inversion. There are other least-squares re®nement methods

that do not assume the linearity of the intensities (or structure

factors) with respect to the parameters and that use the

Hessian matrix of second derivatives (Lunin & Urzhumtsev,

1985; Murshudov et al., 1999).

2.2. The normalized matrix

The diagonal terms Aii in the normal matrix provide an

approximate value of the standard deviation of the variables

pi in the least-squares re®nement: ��pi� ' A
ÿ1=2
ii (Hamilton,

1964; Franklin & Marsh, 1982). The parameters pi can thus be

normalized by dividing them by the quantity A
1=2
ii . The

corresponding normalized matrix is obtained by replacing the

Aij elements by

A0ij � Aij=�AiiAjj�1=2: �5�
The normalized A 0ij value corresponds also to the correlation

coef®cient between the parameters pi and pj in a binary

re®nement (Hamilton, 1964). In the following parts of the

present study, the criterion that de®nes the sparsity of the

normal matrix is the smallness of the elements A0ij relative to

unity.

2.3. The software MOPRO

Protein diffraction at atomic resolution is becoming more

and more accessible and accurate with the availability of

intense third-generation synchrotron sources (Dauter et al.,

1997). Depositions of crystal structures of small and even

medium-size proteins at resolutions better than 1.2 AÊ are

becoming more frequent at the Protein Data Bank (Longhi et

al., 1998). Therefore, charge-density studies, which require

subatomic resolution (d < 0.6 AÊ ), can be performed on

molecules of increasing size (Jelsch et al., 1998; Housset et al.,

2000). Recently, the valence electron density of the protein

crambin was analysed at 0.54 AÊ resolution (Jelsch et al., 2000).

Following from this work, the computer program MOPRO

was developed for the charge-density analysis of macro-

molecules (Guillot et al., 2001). This software is derived from

the least-squares program MOLLY (Hansen & Coppens,

1978), which was extensively modi®ed with the introduction of

restraints on the stereochemistry and on the thermal motion.

With MOLLY, the least-squares re®nement is performed

by inverting the normal matrix to solve equation (2). In the

case of macromolecules, as the number of variables is large,

the storage and inversion of the full matrix is computationally

expensive. With the conjugate-gradient algorithm (Hestenes

& Stiefel, 1952; Konnert, 1976), it is not necessary to store the

full normal matrix (Rae, 1978) as its inversion is not required.

Thus, procedures in which the small elements are neglected

can be applied ef®ciently. For instance, the SHELXL re®ne-

ment software (Sheldrick & Schneider, 1997) computes the

sparse normal matrix `on the ¯y': all the elements of the

normal matrix are computed but only the elements with a

signi®cant magnitude are stored. The conjugate-gradient

method, which has been implemented in MOPRO for

macromolecular re®nement (Guillot et al., 2001), has the

additional advantage of being less sensitive to matrix singu-

larity problems compared with the matrix-inversion method.

The inversion of the full matrix in the case of crambin (Jelsch

et al., 2000) was often hindered by the singularity of the

normal matrix, especially when alternative positions of

disordered protein atoms or solvent molecules were re®ned

simultaneously. These matrix-inversion problems were

avoided with the conjugate-gradient procedure.

In the application to proteins at subatomic resolution, the

calculations of the diffraction intensities and of their deriva-

tives are the most consuming parts of the program. These

routines have been parallelized in MOPRO with respect to the

re¯ections (Guillot et al., 2001). All the crystallographic

re®nements described in this paper were performed with

MOPRO and the sparsity of the normal matrix was assessed

before adding the stereochemical restraint terms to the matrix.

As the restraints concern atoms which are generally close

to each other in the molecular structure, their application

modi®es only a small proportion of elements in the normal

matrix.

3. Analytical expression of matrix elements

The expressions of the normal-matrix elements are analysed in

this section for different variables used in a crystal structure

re®nement. The dependencies of the matrix elements on the

Patterson vectors observed by Templeton (1999) for the

coordinates and isotropic temperature factors are generalized

to anisotropic thermal displacement as well as charge-density

parameters.
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3.1. Structure-factor amplitude

The structure-factor amplitude FH can be computed as the

sum over the atoms a in the unit cell:

FH �
P

a

Ga exp�2i�H � Xa�: �6�

Ga is a generalized scattering factor of the atom; it incor-

porates the scattering factor fa of the atom at rest, the thermal

motion and the deformations of the atomic electron density. In

the case of spherical atoms with isotropic temperature factors

Ba, the factor Ga is simply a function of the resolution d = 1/2s:

Ga � fa�s� exp�ÿBas2�: �7�
When anisotropic thermal displacement parameters are

assigned to the atoms, the expression of Ga as a function of the

thermal tensor is

Ga � fa�s� exp�ÿtH �H�: �8�
For simplicity of the equations, the �ij coef®cients are

considered here instead of the more traditional U ij thermal

displacement parameters. The occupancy Q of an atom can

also be incorporated into the Ga factor, directly as a propor-

tionality factor. If the anomalous scattering is neglected, the

generalized scattering factor G generated by a spherical-atom

model is a positive real quantity.

3.2. The multipolar pseudo-atom model

At subatomic resolutions (d ' 0:5 AÊ ), the deformation of

the atomic electronic cloud caused by chemical bonds can be

derived from the X-ray diffraction experiment (Coppens,

1967). In the programs MOLLY (Hansen & Coppens, 1978)

and MOPRO (Guillot et al., 2001), the atomic electron density

is described as

�atom�r� � �core�r� � Pval�
3�val��r� �P

l

�03Rl��0r�
P
m�

Plmylm�:

�9�
The ®rst two terms on the right-hand side describe the

spherically symmetric core-plus-valence density. The third

term describes the non-spherical multipolar distribution of the

valence electron density of the atoms. The Rl are exponential

Slater-type radial functions and the ylm� are real spherical

harmonic angular functions. The parameters � and �0 model

the expansion/contraction of the spherical and multipolar

parts, respectively, of the valence electron density.

The charge-density parameters relative to the spherical

part, such as the population Pv and the expansion/contraction

coef®cient � of the valence density, can be readily included in

the generalized scattering factor G. In the description of

aspherical atoms, the multipole populations Plm� can also be

incorporated into the G factor. The multipoles are expressed

in a local axis system in the programs MOLLY and MOPRO,

and the atomic scattering factor Ga is dependent on the

neighbouring atoms de®ning the axes. The component of the

scattering factor arising from the centrosymmetric multipole is

a real number which can be negative or positive depending on

the relative orientation of the vector H and the multipole.

Antisymmetric multipoles generate purely imaginary scat-

tering factors. For the non-hydrogen atoms, the multipoles

have a contribution to the atomic scattering factor that is,

however, small compared with the spherical part of the atomic

density in all the resolution ranges (Jelsch et al., 1998); the

generalized scattering factor Ga is thus not far from being a

real positive number in the complex plane.

3.3. Expression of Axx elements

In this section, let A(xi, xj) be a matrix element corre-

sponding to the x coordinates of atoms i and j. The structure is

re®ned against the diffraction intensities. The triclinic space

group P1 is considered as there is only one symmetry operator

(see Appendix A for a generalization to other space groups).

The derivative of the calculated structure factor FH with

respect to the coordinate xi is

@FH=@xi � 2i� h Gi exp�2i�H � Xi�: �10�
The intensity is equal to the square of the structure-factor

moduli. The derivative of the intensity is thus equal to a real

positive quantity:

@IH=@xi � �@FH=@xi�F �H � �@F �H=@xi�FH: �11�
The element A(xi, xj) of the normal matrix related to the two

coordinates xi and xj is the sum over all re¯ections [equation

(4)] of the product of the derivatives:

@IH

@xi

@IH

@xj

�UH � VH

�
�
@FH

@xi

@F �H
@xj

FHF �H �
@F �H
@xi

@FH

@xj

FHF �H

�
�
�
@FH

@xi

@FH

@xj

F �2H �
@F �H
@xi

@F �H
@xj

F 2
H

�
: �12�

The terms UH and VH are each sums of two conjugated

complex numbers and are therefore real:

UH � 8�2 h2 IH Re�GiG
�
j E� �13�

and

VH � ÿ8�2 h2 Re�F �2H GiGj E 0�; �14�
with

E � exp�2�H � �Xi ÿ Xj�� and E 0 � exp�2i�H � �Xi � Xj��:
�15�

The summation over the re¯ections of these terms corre-

sponds to the expressions H1 and H2 described by Agarwal

(1978):

H1�xi; xj� �
P
H

WHUH and H2�xi; xj� �
P
H

WHVH; �16�

A�xi; xj� � H1�xi; xj� �H2�xi; xj�: �17�
Agarwal (1978) proposed a fast approximate computation of

the normal-matrix elements based on an FFT algorithm in

which the second terms H2(xi, xj) are neglected. For the



diagonal elements, as the vector �Xi ÿ Xj� is nulli®ed, the

analytical expression of A(xi, xi) simpli®es to

A�xi; xi� �
P
H

WH�UH � VH�

� 8�2
P
H

WHh2fjGij2IH ÿ Re�F �2H G 2
i exp�4i�H � Xi��g:

�18�

The summation over the re¯ections of the ®rst terms UH is

additive in absolute value since the factor jGij2IH is always a

real and positive number. The second terms VH are real

numbers of random sign that are always smaller than UH in

absolute value. An approximate value of the diagonal

elements can be obtained from the ®rst-term summation

(Agarwal, 1978):

A�xi; xi� ' 8�2
P
H

WH jGij2 h2 IH: �19�

For the off-diagonal elements of the normal matrix, the sign of

the UH terms depends on the factor Re�GiG
�
j E� in (13). It

must be remembered here that, for a spherical atom, the

generalized scattering factor Gi is a positive real number,

while, for a multipolar atom, Gi is complex but very close

to a positive real number. The exponential factor E in (13) is

close to unity when the exponent is very small. For

2�jH � �Xi ÿ Xj�j<�=2, the factor E is a complex number

with a positive real part and the UH terms are then system-

atically positive. This is the case for a large number of

re¯ections when the two atoms are close to each other in the

molecule �Xi ' Xj�. However, as the resolution increases, the

indices �h; k; l� � H can take larger values and the proportion

of systematically positive UH terms diminishes.

As the exponent function has a period of 2i�, the expression

of E [equation (15)] is invariant when unit-cell translations are

applied to atoms ai and aj. More generally, a signi®cant

number of UH terms are positive when one of the Patterson

vectors between the two atoms in the crystal is small. The

summation H1 �PH WHUH is additive in absolute value,

totally for the diagonal elements and partially for pairs of

atoms close to each other in the crystal. The off-diagonal terms

A0(xi, xj) of the normalized matrix can therefore be expected

to be small relative to unity when the distance between the

atoms in the crystal is large.

As observed by Agarwal (1978), the summation
P

H WHUH

represents the Fourier transform of the quantity

8�2 h2 IH GiG
�
j evaluated at �Xi ÿ Xj�, the vector distance

between the atoms. This Fourier transform has a very large

positive peak at the origin, corresponding to the diagonal

terms Xi � Xj, and then drops rapidly and alternates in sign as

the Patterson vector length increases. On the other hand, as

the squared conjugated structure factor F �2H has a random

phase in the complex plane (except for centric re¯ections), the

terms VH are of arbitrary sign.

In the case of structures re®ned versus the structure-factor

moduli |FH| (instead of the intensities), Templeton (1999)

showed, in a similar manner, that the elements of the normal

matrix depend on the Patterson vector and have a global

tendency to decrease with its length.

3.4. Expression of Axy elements

In the case of cross-coordinate pairs A(xi, yj), the quantities

UH and VH [equations (13) and (14)] are

UH � 8�2 hk IH Re�GiG
�
j E� �20�

and

VH � ÿ8�2 hk Re�F �2H GiG
�
j E 0�: �21�

TheA(xi, xj)elementsandthecross-coordinateelementsA(xi,yj)

yj) differ essentially in that they require respectively the

positive factor h2 [equations (13) and (14)] and the factor hk,

which can be positive or negative. At ®rst view, the summation

of the terms UH for small Patterson vectors does not appear

this time to be additive in absolute value over an independent

part of the reciprocal space (for example, the hemisphere

h � 0 in the triclinic case), because of the non-constant sign

of the product hk. The A(xi, yj) elements can thus be expected

to be generally smaller than A(xi, xj) and A(yi, yj) in the case

of small Patterson vectors.

In this summation, in order to identify partial contributions

that might be additive in absolute value, approximate values of

WHUH shall be considered. The quantity hk Re�GiG
�
j E� is

highly anisotropic in three-dimensional space and the

summation over WHUH merits detailed analysis. The summa-

tion can be performed over a positive fraction of the reci-

procal space �h � 0; k � 0; l � 0� by considering the average

value of WHUH over the re¯ections ��h;�k;�l�:P
H

WHUH �
P

H� 0

nHhWHUHi: �22�

The factor nH accounts for the
P

H number of regrouped

re¯ections. The re¯ections with zero indices �nH < 4� deserve

special treatment at this point. In this summation, in order to

identify partial contributions that might be additive in abso-

lute value, an approximate value of the average hWHUHi can

be obtained by considering the average value of WHIH over

the nH re¯ections [equation (20)]. The deviation from this

approximate value is by de®nition non-additive in absolute

value. In a further approximation, the generalized scattering

factors Gi can be considered as real positive; the average over

the four re¯ections is then simpli®ed:

hWHUHi ' 2�2 hWHIHiGiGj

� P
��h;�k;�l�

hk cos�2�H � �Xi ÿ Xj��=nH: �23�

The cosine functions can be summed over the re¯ections

��h;�k;�l�; an approximate value of hWHUHi is then given

by

hWHUHi ' hWHIHiGiGj U
xy

4H; �24�

with
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U
xy

4H � ÿ 8�2 hk sin 2�h�xi ÿ xj� sin 2�k�yi ÿ yj�
� sin 2�l�zi ÿ zj� �25�

for a general re¯ection with no zero index. The indices h, k and

l are all positive here and, as the sine function has a constant

sign for arguments in the interval ]0, �[ or in the interval

]ÿ�, 0[, the quantity U
xy

4H (Table 1) has a constant sign for a

large number of re¯ections when the Patterson vector length

is small.

The summation of the approximated hWHUHi values is then

partially additive in absolute value. However, when the

Patterson vector length becomes very short, the factor U
xy

4H

tends to zero.

For short non-zero Patterson vector lengths, the normalized

matrix elements A0(xi, yj) can take signi®cant values relative to

unity. This is in agreement with the results found by

Templeton (1999) for cross-coordinate elements in the case of

a structure re®ned against the structure-factor moduli. The

expression of Axx and Axy elements for a triclinic P1 crystal

can be generalized to space groups with several symmetry

operators (see Appendix A). For simplicity of the equations,

the expressions of the matrix elements related to thermal

parameters in the following paragraphs are treated in space

group P1 only; they can similarly be generalized for all space

groups.

3.5. Isotropic thermal parameters

The thermal displacement parameters can be incorporated

in the generalized scattering factor G [equation (6)]. The

derivative of the structure factor with respect to a thermal

parameter bi is then

@FH=@bi � �@Gi=@bi� exp�2i�H � Xi�: �26�

The values of the previously de®ned UH and VH quantities

relating to a pair of thermal parameters (bi, bj) are

UH � 2IH Re��@Gi=@bi� �@G �j =@bj�E� �27�
and

VH � 2Re�F �2H �@Gi=@bi� �@Gj=@bj�E 0�: �28�
The second terms VH have obviously a random sign, as in the

case of coordinate parameters. The sign of UH depends on the

value of the product of the derivatives and has to be consid-

ered in detail.

The derivative of Gi with respect to an isotropic thermal

motion parameter is

@Gi=@bi � ÿs2 Gi: �29�
The quantity GiG

�
j and consequently the product of the

derivatives are close to positive real numbers (Table 1). The

expression of the UH terms is then

UH � 2s4 IH Re�GiG
�
j E�: �30�

A large number of UH terms [equations (27) and (30)] are

positive when the Patterson vector is short and the summation

of an element Abb is then partly additive in absolute value. The

normalized matrix elements A0bb concerning two isotropic

thermal parameters have thus the same behaviour as the A0xx

elements: they tend globally to decrease from unity to small

values as the interatomic distance increases.

3.6. Anisotropic thermal parameters

When the anisotropic motion is modelled, the diagonal �ii

and non-diagonal �ij elements of the thermal tensor have to be

distinguished. The derivatives with respect to the parameters

Table 1
Parameter pairs and expressions for the product of the structure-factor derivatives.

The value of the predominant terms UH (divided by the common factor IHGiGj) in space group P1 is also given. When the UH terms are non-additive in absolute
value for short Patterson vectors, the symbol' precedes an approximate value of the average of UH=IHGiGj over the four re¯ections (�h;�k;�l). By convention,
the indices h, k and l are all positive (� 0) here. For the expression of UH in this table, the generalized structure factors Gi have been approximated to be real
quantities. E � exp�2i�H � Xi� exp�ÿ2i�H � Xj� � exp�2i�H � �Xi ÿ Xj��:
Parameter pair pi pj Derivatives product �@FH=@pi��@F �H=@pj� Value of UH=IHGiGj

Xi Xj 4� h2 GiG
�
j E 8�2 h2 cos�2�H � �Xi ÿ Xj��

Xi Yj 4� hk GiG
�
j E ' ÿ8�2 hk sin 2�h�xi ÿ xj� sin 2�k�yi ÿ yj� cos 2�l�zi ÿ zj�

Biso
i Biso

j
s4 GiG

�
j E 2s4 cos�2�H � �Xi ÿ Xj��

Biso
i �11

j
s2 h2 GiG

�
j E 2s2 h2 cos�2�H � �Xi ÿ Xj��

Biso
i �12

j
s2 hk GiG

�
j E ' ÿ2s2 hk sin 2�h�xi ÿ xj� sin 2�k�yi ÿ yj� cos 2�l�zi ÿ zj�

�11
i �11

j
h4 GiG

�
j E 2h4 cos�2�H � �Xi ÿ Xj��

�11
i �22

j
h2k2 GiG

�
j E 2h2k2 cos�2�H � �Xi ÿ Xj��

�12
i �12

j
h2k2 GiG

�
j E 2h2k2 cos�2�H � �Xi ÿ Xj��

�11
i �12

j
h3k GiG

�
j E ' ÿ2h3k sin 2�h�xi ÿ xj� sin 2�k�yi ÿ yj� cos 2�l�zi ÿ zj�

�11
i �23

j
h2kl GiG

�
j E ' ÿ2h2kl cos 2�h�xi ÿ xj� sin 2�k�yi ÿ yj� sin 2�l�zi ÿ zj�

�12
i �13

j
h2kl GiG

�
j E ' ÿ2h2kl cos 2�h�xi ÿ xj� sin 2�k�yi ÿ yj� sin 2�l�zi ÿ zj�

Xi Biso
j

2i�h s2 GiG
�
j E ' 4� h s2 sin 2�h�xi ÿ xj� cos 2�k�yi ÿ yj� cos 2�l�zi ÿ zj�

Xi �
11
j

2i� h3 GiG
�
j E ' 4�h3 sin 2�h�xi ÿ xj� cos 2�k�yi ÿ yj� cos 2�l�zi ÿ zj�

Xi �
22
j

2i� hk2 GiG
�
j E ' 4� hk2 sin 2�h�xi ÿ xj� cos 2�k�yi ÿ yj� cos 2�l�zi ÿ zj�

Xi �
12
j

2i� h2k GiG
�
j E ' 4� h2k cos 2�h�xi ÿ xj� sin 2�k�yi ÿ yj� cos 2�l�zi ÿ zj�

Xi �
23
j

2i�hkl GiG
�
j E ' ÿ4� hkl sin 2�h�xi ÿ xj� sin 2�k�yi ÿ yj� sin 2�l�zi ÿ zj�



�11
i and �12

j concerning the atoms ai and aj are, for instance,

respectively

@Gi=@�
11
i � ÿh2 Gi and @Gj=@�

12
j � ÿ2hk Gj: �31�

The additivity in absolute value of the UH terms depends on

the sign of the fourth degree polynomial function of the

re¯ection indices (h, k and l) in the product of the derivatives

(Table 1). For simplicity of the following equations, the

generalized scattering factors G are here approximated to be

positive real quantities.

When the factors h, k and l all appear with an even expo-

nent, the UH terms are positive for a large number of re¯ec-

tions and their summation is partly additive in absolute value

for atoms close to each other in the crystal. This is clearly the

case for homologous parameter pairs like ��11
i ; �

11
j � or

��12
i ; �

12
j � and the corresponding normalized matrix elements

are large for short Patterson vector length, tending to unity

when the length tends to zero. For non-homologous parameter

pairs of type ��11
i ; �

22
j � or �Biso

i ; �
11
j �, the summation is also

partly additive in absolute value, but the normalized matrix

elements take variable values below unity for zero Patterson

vector lengths.

In the case of parameter pairs of type ��12
i ; �

13
j �, ��11

i ; �
23
j � or

��11
i ; �

12
j �, which result in odd exponents for some re¯ection

indices (Table 1), the derivative products can have a negative

or a positive sign, depending on the re¯ection indices. Like for

the cross-coordinate elements Axy, the summation of UH can

be regrouped over the four ��h;�k;�l� re¯ections in order

to identify a partial additivity in absolute value. Similar to

the case of the quantity U
xy

4H de®ned by equation (24), the

approximate average of UH over the four re¯ections leads to

the quantity U
�i�j

4H (see Table 1). The normal-matrix elements

can be expected to be large for short non-zero Patterson

vectors only, as a large number of U
�i�j

4H terms then have the

same sign. The magnitudes of the normal-matrix elements

relative to �ij parameters have been analysed in a real case, as

described in x4.6.

Some ®ner effects in three dimensions may also be

described. The Patterson vectors in some directions are more

likely to produce large normal-matrix elements depending

on the thermal displacement parameters considered. For

example, the ��11
i ; �

23
j � or ��12

i ; �
13
j � parameter pairs generate

the same indices polynomial function (Table 1) and can be

expected to have similar behaviours. These matrix elements

are likely to be large when the Patterson vector between the

two considered atoms is small, with a zero length in the x

direction and non-zero lengths in the y and z directions.

3.7. Coordinates and temperature factors

For the coordinate/thermal displacement parameter pairs

(xi, bj), the values of UH and VH have the following expres-

sions:

UH � ÿ4� h IH Im�Gi �@G �j =@bj�E� �32�
and

VH � ÿ4� h Im�F �2H Gi �@Gj=@bj�E 0�: �33�
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Table 2
Crystallographic data on the high-resolution structures used for the
analysis of the normal matrix in practical cases.

Crambin Toxin
Aldose
reductase NAD+

Unit-cell volume (103 AÊ 3) 16.9 55.3 154 0.77
Space group P21 P212121 P21 P1
Molecular weight (kDa) 4.7 7.1 36 0.73
No. of amino acids 46 64 315 ±
No. of atoms in asymmetric unit 1000 1080 5884 83
Resolution (AÊ ) 0.54 0.96 0.65 0.50
No. of re¯ections with I > �(I) 111350 32890 410000 12590

Figure 2
Frequency of the interatomic distances between protein atoms in the
crambin crystal. The x axis is divided into shells of 0.1 AÊ . There are two
symmetry operators in space group P21. The two shortest (different)
Patterson vectors between atom pairs and their symmetry equivalents are
represented.

Figure 1
Evolution of the root mean square (r.m.s.) values of the normalized
matrix elements A0(xi, xj) (black lines) and A0(xi, yj) (grey lines) as a
function of the Patterson vector length in the case of crambin at 0.54 AÊ

resolution. The x coordinates of the non-hydrogen atoms of the protein
were re®ned versus the diffraction intensities I (thick lines) or versus the
structure-factor moduli |F | (thin lines).
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An approximate value of UH can be obtained by assuming that

the generalized scattering factors are real:

UH ' ÿ4� h IH Gi �@Gj=@bj� sin�2�H � �Xi ÿ Xj��: �34�

The re¯ection indices h, k and l, as a third degree polynomial

function, are factors in the expression for UH, which does not

have a constant sign. Because of the sine factor, the quantity

UH is very small if the two parameters concern the same atom.

To identify a partial additivity in absolute value in theP
WHUH summation, the terms can again be regrouped for

the four re¯ections ��h;�k;�l�. The quantity U xb
4H (Table 1)

can then be de®ned similarly to U
xy

4H [equation (24)]. The

summation of U xb
4H displays some additivity in absolute value

(Table 1) and the normal-matrix elements Axb have a

propensity to be large for short non-zero Patterson vectors

only, similarly to Axy. In three-dimensional space, the most

favourable directions for large matrix elements are directly

related to the presence of cosine and sine functions in the U xb
4H

factor (Table 1).

3.8. Charge-density parameters

The analytical expressions for UH and VH by (27) and (28)

are valid for all parameters p which can be expressed in the

generalized scattering factor G [equation (6)]. When a

charged spherical-atom model is used (Coppens et al., 1979),

the population Pv and the expansion coef®cient � of the

valence electron density generate @G=@p derivatives which are

real and isotropic. The derivatives of the G factors with

respect to the multipolar parameters Plm and their expansion

coef®cient �0 are, on the other hand, complex quantities and

highly anisotropic. These derivatives have more complicated

expressions than those for the coordinates and thermal par-

ameters and are therefore not speci®ed here.

The expressions for UH by (27) and (32) are still valid for

charge-density parameters; therefore, the exponential E

[equation (15)] is still a factor of the UH terms and the matrix

elements depend on the Patterson vector.

The conclusions drawn on the coordinates and on the

thermal parameters can be generalized to the multipole

parameters. For all pairs of parameters describing the mole-

cular structure or the charge density, there is a certain degree

of additivity in absolute value for short Patterson vectors,

depending on the behaviour of the product of the derivatives

@�Gi exp�2i�H � Xi��=@p. The normal matrix elements can be

expected to be large for small Patterson vectors only. Exam-

ples of normal-matrix elements related to charge-density

parameters are given in the case of the NAD+ molecule in x4.6.

For a given pair of multipolar parameters, the
P

WHUH

summations in three-dimensional space around the Patterson

vector origin have a degree of additivity that is intermediate

between Axx and Axy, depending on the relative orientation of

the multipoles. For instance, the A0DxDy normalized matrix

elements, corresponding to two orthogonal dipoles of a given

atom, can be expected to be generally smaller than unity,

similarly to the A0xy elements.

4. Matrix sparsity in real cases

The degree of matrix sparsity has been investigated for four

systems of different size and resolution (Table 2): (i) a small

protein at subatomic resolution, crambin at 0.54 AÊ (Jelsch et

al., 2000); (ii) a small protein at atomic resolution, the toxin of

the scorpion Androctonus Australis Hector II at 0.94 AÊ

(Housset et al., 2000); (iii) a medium-size protein at subatomic

resolution, human aldose reductase at 0.65 AÊ (Mitschler et al.,

2000); (iv) a small molecule at subatomic resolution, nicotin-

amide adenine dinucleotide (NAD+) at 0.50 AÊ (Guillot et

al., 2000). The crystallographic data on these systems are

Figure 3
Distribution of the normalized matrix elements jA0xxj in the [0, 1]
segment, when applying a resolution cutoff of (a) 1 AÊ , (b) 1.5 AÊ or (c) 2 AÊ

to the diffraction data of crambin. The x coordinates of the non-
disordered non-hydrogen atoms of the protein were re®ned.



summarized in Table 2. These structures were re®ned with the

software MOPRO (Guillot et al., 2001) using a model for

charged non-spherical multipolar atoms [equation (9)] to

describe the molecular electron-density distribution accu-

rately. All the matrix computations were performed using the

re®ned molecular structures unless otherwise speci®ed.

4.1. Crambin at 0.54 AÊ resolution

In the charge-density analysis of this protein (Jelsch et al.,

2000), the normal matrix turned out to be extremely sparse, as

can be seen in Fig. 1. The root mean square (r.m.s.) magni-

tudes of the normalized matrix elements during a cycle of

re®nement of the atomic coordinates are shown. The value of

the A0xx and A0xy matrix elements have a global tendency to

decrease when the distance in the crystal between the

concerned atoms increases, as pointed out by Templeton

(1999). Interatomic distances shorter than 1 AÊ correspond to

the disordered atoms in crambin, which represent as many as

30% of the protein atoms (Yamano et al., 1997).

The r.m.s. magnitudes of the normalized matrix elements

are shown for crystallographic re®nements performed versus

the structure-factor moduli and versus the diffraction inten-

sities. The two curves have similar shapes. The r.m.s. values of

A0(xi, xj) decrease from unity by two orders of magnitude as

the Patterson distance varies from 0 to 1.5 AÊ . On the other

hand, the A0(xi, yj) elements have r.m.s. values of 0.15 for pairs

of the same atom and a maximum of 0.2 is reached for

distances around 0.5 AÊ . The only large A0xx and A0xy matrix

elements correspond to parameter pairs relating to the same

atom or to alternative positions of disordered atoms. Even for

atoms linked by a covalent bond (d ' 1.5 AÊ ) in crambin, the

related matrix elements are already very small. At longer

distances (dij > 2 AÊ ), the r.m.s. values of the matrix elements

A0xx and A0xy are relatively stable. In the case of a re®nement

versus the structure-factor moduli, they plateau at the low

values of 0.4 and 0.2%, respectively (Fig. 1). On average, the

A0xy elements are systematically smaller than the A0xx elements.

These computations were performed on the re®ned crambin

structure fwR � �PWH�jF obs
H j ÿ jFHj�2

�P
WHjF obs

H j2�1=2 �
9%g. In order to assess if these results are still valid for a

molecular model far from the converged structure, errors were

introduced into the coordinates (up to �1 AÊ ) and into the

anisotropic thermal motion parameters (up to �10%). The

generated molecular structure has a high crystallographic

residual (wR = 65%). The elements A0xx and A0xy of the

resulting normal matrix display a similar curve to that in Fig. 1.

It must be remembered that the density of interatomic

distances in the crystal (represented in Fig. 2) is not uniform.

For a given pair of atoms, there are four different Patterson

vectors (modulo the translations of unit-cell vectors) in the

case of the space group P21. In the crambin crystal, the � angle

happens to be close to 90�; therefore, the four Patterson

vectors can be grouped into two pairs of nearly equal lengths,

as represented in Fig. 2. In this paper, the magnitudes of the

normal-matrix elements are always analysed (Fig. 1) with

respect to the shortest interatomic distance in the crystal. The

shortest distance in the crystal between two atoms of crambin

is always in the range 0±25 AÊ and the highest frequencies are

found at intermediate distances around 11 AÊ . The distances

shorter than 3 AÊ represent a small proportion (5%) of the

total number of atom pairs in the case of the crambin crystal.

4.2. Crambin at different resolutions

The effect of the resolution on the magnitudes of the

normalized matrix elements has been analysed by applying

several resolution cutoffs to the crambin diffraction data (Fig.

3). When all the re¯ections up to 0.54 AÊ resolution are used,

the r.m.s. values of the matrix elements decrease rapidly with

the Patterson vector length to a low level (Fig. 1). This

decrease becomes less abrupt when the higher-resolution

re¯ections are omitted. At a 1 AÊ resolution cutoff, the

proportion of matrix elements with magnitudes greater than

6% is still negligible at an interatomic distance of 4 AÊ (Fig. 3a).

At a 2 AÊ resolution cutoff, a signi®cant amount of matrix

elements have magnitudes greater than 6% for even the

largest Patterson distances. As a consequence, the normal

matrix in protein crystallography can be considered very

sparse at subatomic and atomic resolution only, whereas, for

more usual resolutions (2 AÊ ), a signi®cant number of matrix

elements can reach non-negligible values at any interatomic

distance.
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Figure 4
Evolution of the H1 �PH WHUH (black lines) and H2 �PH WHVH

(grey lines) summations as a function of resolution (d � 1=2s) in the case
of crambin. The x coordinates of the 423 non-disordered carbon atoms of
crambin were re®ned. The r.m.s. H1 and H2 values for the three different
Patterson vector lengths 0, 1.5 and 5 AÊ have been computed for samples
of 423, 164 and 67 atom pairs, respectively. To compute the terms UH and
VH according to equations (13) and (14), the selected carbon atoms were
each set to be spherical and electrically neutral with an isotropic
temperature factor B of 3 AÊ 2. The other atoms were kept identical to
those of the ®nal re®ned structure. The H2 summation without the centric
re¯ections h0l is also shown for the zero Patterson vector length.
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From an analytical point of view, the exponential factor E

[equation (15)] in the terms of UH is always equal to unity for

diagonal elements (Xi � Xj). For non-diagonal elements, its

phase becomes arbitrary at high resolution and for long

interatomic distances. For short Patterson vectors, the

summation of the UH terms is additive in absolute value up to

a limited resolution. As a consequence, when the resolution is

increased, the off-diagonal elements increase more slowly

than the diagonal elements and the normal matrix becomes

sparser.

4.3. Summation decomposition

The evolution of the r.m.s. magnitudes of the normal-matrix

elements with the resolution and with the Patterson vector

length can be investigated further by looking at the decom-

position into two terms, Axx � H1�H2 [equation (17)]. In

Fig. 4, the variations of the r.m.s. values of the two summations

H1 and H2 with the resolution are represented for crambin.

Since the crambin crystals are of space group P21, the quan-

tities UH and VH are each a sum of four terms related to the

symmetry-equivalent atoms in the unit cell [see equations (39)

and (40) in Appendix A].

For a diagonal element (zero interatomic distance), the

summation over H1 �PWHUH is preponderant compared

with H2 �PWHVH and the ratio between the two sums

increases with the resolution, reaching a value of 13 when all

the re¯ections are used (Fig. 4). For the interatomic distance

of 1.5 AÊ , H1 is still nearly one order of magnitude larger than

H2. The summation H2 [equation (16)] is thus small compared

with H1 for short Patterson vectors, as discussed previously in

x3.3. The FFT computation of the normal-matrix elements

proposed by Agarwal (1978) which neglected the term H2 is

thus a fully valid approximation.

The H2 summation is not additive in absolute value as the

terms VH contain the factor F �2H , which has an arbitrary phase

(for acentric re¯ections). For zero Patterson vector lengths,

the H2 summation is not, however, as small as could be

expected, as it is one order of magnitude larger (at the highest

resolution in Fig. 4) than H1 and H2 computed for a long

interatomic distance (d = 5 AÊ ). This could be caused by the

centric re¯ections (h0l) in space group P21 for which the factor

F �2H is a positive real number. To investigate this point, the H2

summation for d = 0 AÊ has been computed without the centric

re¯ections. The magnitude of H2 summed over the acentric

re¯ections only is reduced to the values obtained for long

Patterson vectors (Fig. 4). In this example, in space group P21,

the contribution of the centric re¯ections, which is partially

additive in absolute value, turns out to be predominant in the

H2 summation for pairs of the same atom.

When the interatomic distances are increased from 0 to 5 AÊ ,

there is a decline in both H1 and H2. The decrease of H1 is

however steeper. For the longest distance represented (d =

5 AÊ ), the H1 and H2 summations are both non-additive in

absolute value and have, on average, similar magnitudes.

4.4. The scorpion toxin

The sparsity of the matrix has also been assessed for a

scorpion toxin, the diffraction data of which are available to

atomic resolution (Housset et al., 2000). The average level of

the normalized matrix elements relative to the coordinates is

shown in Fig. 5. The curves of A0xx and A0xy as a function of the

Patterson vector length have a similar pro®le to that of

crambin (Fig. 1). For interatomic distances longer than 3 AÊ ,

the r.m.s. values of the A0xx and A0xy elements plateau at 0.8 and

0.45%, respectively, at levels about twice high as those of

crambin (Fig. 1). However, the magnitude of the matrix

elements for a given interatomic distance varies greatly on the

plateaus: the r.m.s. deviation represents 75% of the r.m.s.

Figure 5
Evolution of the r.m.s. normalized-matrix elements A0xx and A0xy as a
function of the Patterson vector length in the case of scorpion toxin at
0.96 AÊ resolution. The r.m.s. deviation (r.m.s.d.) over samples of 300 |A0|
elements and the maximum of |Axx| are also shown. The coordinates of
the 481 non-hydrogen non-disordered atoms of the protein were re®ned
versus the structure-factor moduli.

Figure 6
Evolution of the normalized-matrix elements A(x, x) and A(U11, U11) as
a function of the Patterson vector length in the case of aldose reductase at
0.65 AÊ resolution. The matrix elements have been grouped in shells of
0.2 AÊ for the calculation of the r.m.s. and maximum values.



magnitude and the largest jA0xxj elements reach 0.05, which is

about ®ve times larger than the r.m.s. value (Fig. 5). For pairs

of the same atom, the A0xy elements have a r.m.s. value of 0.045

with a small r.m.s. deviation of 0.01. The A0xy matrix elements

related to bonded atoms, in the range 1.3 < d < 1.6 AÊ , display a

very variable magnitude: the r.m.s. value is 0:05� 0:04 and the

maximum value is 0.24. The matrix elements show the highest

variability, in relative value (r.m.s.d./r.m.s.), for bonded or

neighbouring atoms (1.3 < d < 2.5 AÊ ).

4.5. Aldose reductase

The magnitudes of the normal-matrix elements were

investigated for a medium-size protein: aldose reductase (315

amino acids) at subatomic resolution 0.65 AÊ (Table 2). For

atoms linked by a covalent bond (d ' 1.5 AÊ ), the A0xx and

A0
U11;U11 elements have r.m.s. values around 4% (Fig. 6). For

longer distances, they plateau at values ten times smaller,

which is comparable with the case of crambin at 0.54 AÊ (Fig.

1). The highest values of the A0xx elements decrease globally

with the Patterson vector lengths and, for distances longer

than 10 AÊ , they are generally lower than 5%.

4.6. A small molecule: NAD+

The normal-matrix elements have also been analysed in the

case of a small molecule at subatomic resolution: the oxidized

form of nicotinamide adenosine dinucleotide (NAD+), an

important redox cofactor in biology. The X-ray diffraction

experiment and the molecular structure have been described

by Guillot et al. (2000) and a charge-density analysis is

underway. An example of the behaviour of the normal-matrix

elements relative to the anisotropic thermal displacement

parameters is given in Fig. 7. The matrix elements relative to

the homologous parameter pairs ��11; �11� and ��12; �12�
decrease with the interatomic distance in both cases from

unity to values around 2%. On the other hand, the diagonal

elements of the pairs of the non-homologous parameters

��11; �22�, ��11; �12� and ��11; �13� have average values 0.38,

ÿ0.45 and ÿ0.25, respectively, with a small standard deviation

of 0.01. For the non-diagonal elements, the r.m.s. values are

generally smaller compared with pairs of the same parameter.

The matrix elements related to coordinates have magnitudes

that are comparable with those related to the thermal par-

ameters (®gure not shown).

A high-order re®nement, in which only the re¯ections at

high resolution are taken into account, is a commonly used

procedure for the deconvolution of the thermal motion from

the electron-density deformation (Coppens, 1967). To analyse

the properties of the normal matrix in such a re®nement, the

thermal displacement parameters of NAD+ were re®ned

versus the high-resolution re¯ections only (Fig. 7). When the

low resolution is truncated at 0.7 AÊ , the r.m.s. values of the

normal-matrix elements are globally reduced by a factor of

about four. The magnitudes of the non-diagonal normalized-

matrix elements turn out to be generally larger by a factor of

four compared with a re®nement versus all the re¯ections,

which may be related to the reduction of the number of

re¯ections.

For this small molecule, the charge-density parameters of

the individual atoms were re®ned; the magnitudes of the

normalized matrix elements related to several pairs of multi-

poles are shown in Fig. 8. The elements decrease globally with

the Patterson vector length and have r.m.s. values around 3%

for distances above 2 AÊ . For zero Patterson vector lengths, the

elements related to pairs of the same parameter, like

A(Dx, Dx) and A(Qzx, Qzx), are equal to unity, while the

elements related to different parameters are one order of

magnitude smaller. It should be noted that the A(Dx, Dx) and

A(Dx, Dy) elements have similar r.m.s. values for non-zero

interatomic distances (d > 1.3 AÊ ), as the orientation of the

dipoles (de®ned in a local axis system) is different for each

atom.

4.7. Number of reflections

To what extent does the number of re¯ections have an

effect on the relative magnitudes of the diagonal and off-

diagonal normal-matrix elements? For the diagonal elements,

the partial summation
P

WHUH is additive in absolute value.

For off-diagonal elements, the terms tend to have arbitrary

phases for suf®ciently long Patterson vectors and for high-

resolution re¯ections. The sum of N unitary complex numbers

with an arbitrary phase has an expected modulus which grows

only with N1/2. On the other hand, the sum of the moduli is

additive in absolute value and grows with N. The ratio of the

two sums tends to zero as Nÿ1/2, when the number of terms

becomes large. It can thus be expected that the larger the

number of re¯ections, the larger the diagonal elements are

likely to be compared with the off-diagonal elements.

In the summation over the reciprocal space ofP
WH�UH � VH�, the terms have variable moduli and the

evolution of their r.m.s. values is not uniform with the reso-

lution. Globally, the factors |IHGiGj| decrease with the reso-

lution. This is concomitantly compensated by the weighting

scheme �WH � 1=�2�IH�� and other factors depending on the

re¯ection indices (for example h2 in the case of Axx elements)

which increase with the resolution.

The number of re¯ections augments with the resolution

limit of the diffraction data and with the unit-cell dimensions.

The number of re¯ections is largest in the case of macro-

molecules at atomic or sub-atomic resolution compared with

standard protein crystallography or charge-density analyses of

small molecules. As the normal matrix is then extremely

sparse, it is a very favourable case for neglecting a priori most

of the non-diagonal elements according to interatomic

distance criteria. This is also illustrated by Figs. 1, 3, 4, 5, 6 and

7, which demonstrate that the sparsity of the normal matrix

clearly increases with the resolution of the diffraction data and

the size of the system.

4.8. Matrix truncation and parameter shifts

Block-diagonal approximations, by which a large number of

the non-diagonal elements are set to zero, in conjunction with
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stereochemical restraints, can be very effective in re®nement

procedures (Scheringer, 1968). The block-diagonal method,

with fast Fourier algorithms inspired by Agarwal (1978), has

been applied successfully to re®ne protein structures (Dodson,

1981).

The extent to which the a priori small elements of the

normal matrix can be set to zero without perturbing the

solution of the normal equations has been tested for crambin

at different resolutions in a re®nement cycle of the x, y, z

coordinates of the non-disordered carbon, oxygen and

nitrogen atoms of the protein. The matrix elements corre-

sponding to Patterson vectors longer than a given cutoff were

systematically set to zero. The shifts of the x coordinates

obtained with different cutoffs were compared with those

obtained when using the full matrix (Fig. 9). The alteration of

the parameter shifts generally decreases as the resolution is

varied from 1.5 to 0.54 AÊ resolution. The solution of the

system of normal equations [equation (2)] is signi®cantly

altered at the lowest resolutions (1.5 and 1 AÊ ). When all the

re¯ections are used, the discrepancy is modest, with plateaus

from 7 to 5% and distance cutoffs in the range 1±10 AÊ . The

solution of the normal equations is more sensitive to the

matrix truncation when the resolution of the diffraction data is

low. This instability is presumably related to the tendency of

the normal matrix to become singular at lower resolution.

Cowtan & Ten Eyck (2000), in their analysis of a small protein

re®nement, observed that the eigenvalue spectrum becomes

wider at lower resolutions, with an increasing number of

eigenvalues close to zero.

At the highest resolutions of the diffraction data set (0.54,

0.75 and 1. AÊ ), the r.m.s. magnitude of the shifts is very stable

(0.649 � 0.001, 0.71 � 0.01 and 1.08 � 0.01, respectively),

whatever the distance cutoff applied for the matrix truncation.

At 1.5 AÊ resolution, the r.m.s. magnitude is less stable and

Figure 9
Alteration of the x-coordinate shifts �x when truncating the normal
matrix. The x, y, z coordinates of the non-hydrogen non-disordered atoms
of the protein crambin were re®ned at several high-resolution cutoffs. No
restraints were applied. The shifts �x have been normalized by dividing
them by A1=2

xx , representing estimates of the standard uncertainties of x.
The x axis corresponds to the long-distance cutoff (AÊ ) applied in the
sparse-matrix truncation. The relative discrepancy R between the
normalized shifts �x0 and �x when using the sparse or the full normal
matrix are shown at different resolutions. The proportion (divided by 2)
of the normal matrix that is used after truncation is also represented.
R � �Patoms��xÿ�x0�2�Patoms �x2�1=2.

Figure 8
Evolution of the normalized-matrix elements related to charge-density
parameters as a function of Patterson vector length in the case of the
NAD+ molecule at 0.50 AÊ resolution. The dipoles Dx and Dy, and the
quadrupoles Qzz and Qzx of the 44 non-hydrogen atoms of NAD+ were
re®ned versus the structure-factor amplitudes. The r.m.s. and maximum
values were computed over samples of size 44.

Figure 7
Evolution of the normalized-matrix elements related to the thermal
factors Uij as a function of the Patterson vector length in the case of
NAD+. The anisotropic thermal displacement parameters of the 44 NAD+

non-hydrogen atoms were re®ned versus the structure-factor moduli. The
r.m.s. and maximum values are computed over samples of 44 elements.
The `HR' curves are obtained from a high-resolution re®nement using
only the 8096 re¯ections with s � 1=2d > 0:7 AÊ .



increases gradually from 1.33 to 1.63 with the matrix trunca-

tion. There is also a gradual increase of the parameter shifts

(normalized with respect to the diagonal elements) when the

resolution is lowered; this may be attributed to the fact that

the structure used is close to convergence in the re®nement at

0.54 AÊ .

For small molecules like NAD+ at subatomic resolution, the

normal matrix is relatively sparse, as two parameters related to

distinct atoms are generally poorly correlated (Figs. 7 and 8).

As the calculation times are generally modest, computing only

the essential elements of the sparse normal matrix is not

crucial for small molecules. For systems of larger size, the

matrix elements clearly decrease more rapidly with the

interatomic distance, and to lower levels, while the computer

times become larger. In such cases, truncating the normal

matrix according to distance criteria is a fully valid approxi-

mation in the least-squares method and saves considerable

computing time in the case of large structures at very high

resolution.

5. Conclusions

The expected magnitudes of the normal-matrix elements are

highly dependent on the distance in the crystal between the

two atoms concerned. The importance of the shortest

Patterson vector has been demonstrated analytically for the

triclinic P1 case and, in Appendix A, for all space groups. For a

macromolecule at (sub)atomic resolution, the majority of the

positional and thermal motion parameters are uncorrelated, as

the corresponding normal-matrix elements are small. This is

systematically the case for a pair of re®ned parameters when

the distance between the two atoms concerned is typically

larger than three times the resolution. The same conclusions

can be drawn for parameters describing the charge density of a

molecule.

This a priori knowledge that a large number of off-diagonal

terms in the least-squares matrix are small and can be

neglected means that the full normal matrix does not have to

be computed. With the conjugate-gradient algorithm, which

has been implemented in the program MOPRO (Guillot et al.,

2001), it is not necessary to compute and to store the full

normal matrix and its inverse, thus saving computer time and

memory in the case of large systems. An automated routine in

MOPRO is able to select, according to a distance criterion, the

matrix elements for computation. The application of this

sparse-matrix principle is an approximation that is particularly

ef®cient in the case of macromolecules at very high resolution.

APPENDIX A
Generalization to other space groups

The expression of the Axx elements in the triclinic P1 case can

be generalized to other space groups, where there are several

symmetry operators �m in the unit cell. The operators �m are

isometries which can be expressed as

�mX � SmX� Tm; �35�
where Sm is the isometric matrix and Tm is the translation

vector related to the symmetry operation. The expression of

the structure factor is then the sum over all the symmetry

operators and all the atoms a in the asymmetric unit:

FH �
P

a

P
m

Ga exp�2i�H � �mXa�: �36�

The derivative of the structure factor with respect to the

coordinate pi is then

@FH=@pi � 2i�Gi

P
m

hH � Smui exp�2i�H � �mXj�; �37�

where u is the unit-cell vector (among a, b and c) associated

with the coordinate pi. For an Axx element, the values of the

previously de®ned UH and VH quantities [equations (20) and

(21)] are then obtained by double summation over the

symmetry operators:

UH �
P
m

P
n

U m;n
H and VH �

P
m

P
n

V m;n
H ; �38�

where

U m;n
H � 8�2 hH � Smui hH � Snui IH

� RefGiG
�
j exp�2i�H � ��mXi ÿ �nXj��g �39�

and

V m;n
H � ÿ 8�2 hH � Smui hH � Snui

� RefF �2H GiGj exp�2i�H � ��mXi � �nXj��g: �40�
The summation over the re¯ections of the terms U m;n

H and

V m;n
H is carried over an independent fraction of the reciprocal

space. The summation of the second terms V m;n
H is, in general,

non-additive in absolute value, as in the case of the triclinic

space group P1. It should be noted that, for centrosymmetric

space groups, F �2H is a positive real number and the UH and VH

terms are actually equal.

Let (ai, aj) be a pair of atoms in the asymmetric unit, close to

each other (i.e. Xi ÿ Xj is small). All the same symmetry-

related atom pairs (�pai, �paj) are then equally close to each

other since the operators �p are isometric. As the factor

hH � Spui2 [equation (39)] is always positive, the corresponding

U
p;p

H terms have a positive sign for many re¯ections. In the

summation
P

H

P
m

P
n U m;n

H , the portion due to the U
p;p

H

terms is partly additive in absolute value and the normal-

matrix element consequently takes large values. The same

conclusion can be drawn for two atoms (ai, �aj) that are close

to each other after application of a unit-cell vector translation

� to the atom aj, as the matrix S� [equation (39)] of the

symmetry operator is equal to the identity I.

More generally, when one of the Patterson vectors

�mXi ÿ Xj is small, the corresponding exponential factor in

U m;I
H is close to unity, or has a positive real part for a large

number of re¯ections, and the partial summation
P

H U m;I
H

takes large values. In addition, the Patterson vectors

�p�mXi ÿ �pXj between the symmetry-related atoms are

equally short. The sign of the corresponding U
pm;p

H terms

depends, however, on the factors hH � SpSmuihH � Spui [equa-
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tion (39)]. When Smu and u happen to be equal, these factors

are then equal to the square of hH � Spui and are therefore

positive. Similarly, when Smu and u are opposite, these factors

are always negative, and the normal-matrix element takes

large negative values since the summation is partially additive

in absolute value with respect to the U
pm;p

H terms. In triclinic,

monoclinic or orthorhombic space groups, the linear operators

Sm are necessarily a twofold axis, a mirror plane or the

inversion, and the vectors Smu and u are consequently always

collinear.

In space groups possessing threefold or fourfold axes,

these two vectors can be non-collinear and the factors

hH � SpSmuihH � Spui are not necessarily always of the same

sign. Depending on the space-group symmetry operators and

on the direction u, the number of factors of one sign might

exceed the number with the other sign. Alternatively, in some

cases, the number of positive and negative factors might be

globally equivalent and the summation of the UH terms might

not take large values. This can for instance occur for Axx

elements in space group P4 with the fourfold rotation axis

� � 4c. Let ai and aj be two atoms in the asymmetric unit

with a short interatomic distance d(ai, �aj). The factor

hH � �aihH � ai is here equal to hk, which is reminiscent of the

expression of Axy in space group P1 [equation (20)]. The four

atom pairs ��p�1ai; �
paj� form short Patterson vectors and the

four factors hH � SpSmuihH � Spui � hH � �p�1aihH � �pai are

equal to hk for p = 0 or 2 and toÿhk for p = 1 or 3. As a result,

the signs of the four U �p�1;�p

H terms compensate one another

globally in the Axx summation. In this example, the magni-

tudes of the Axx elements for pairs of neighbouring atoms, like

(ai, �aj), are expected to follow a similar trend to those

described for Axy in space group P1 (x3.4). This is related to

the fact that a shift applied in the x direction on atom aj results

in a movement of the symmetry-related atom �aj in the y

direction. It can also be shown that the Axy and Ayx elements

corresponding to atoms ai and �aj are large and tend respec-

tively to ÿ1 and 1 for short (ai, �aj) distances.

Similarly to the triclinic P1 case, the Axx elements of the

normal matrix in other space groups are expected to be large

when the two atoms concerned are close to each other in the

asymmetric unit or after application of unit-cell vector trans-

lations. The normalized Axx elements tend to unity when the

Patterson vector length tends to zero and it can be shown that

Axy take signi®cantly smaller values.

When the two atoms are close to each other after applica-

tion of a symmetry operation, the magnitudes of the Axx- and

Axy-type elements are also likely to be large for short

Patterson vectors. However, if the symmetry operator changes

the nature of the coordinates, the Axx and Axy pro®les may be

consequently exchanged or modi®ed.

In the triclinic case, the summation over the re¯ections in

equation (1) is carried out over half of the reciprocal space. In

space groups of higher symmetry, the summation is performed

over an independent fraction of the reciprocal space and the

equivalent re¯ections in equation (37) are generated by the

symmetry operations via the hH � Smui factors.
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